Scientists in California make a significant step in what could one day be an important solution to the global climate crisis, driven primarily by burning fossil fuels.
Scientists in California shooting nearly 200 lasers at a cylinder holding a fuel capsule the size of a peppercorn have taken another step in the quest for fusion energy, which, if mastered, could provide the world with a near-limitless source of clean power.
This marks another significant step in what could one day be an important solution to the global climate crisis, driven primarily by the burning of fossil fuels.
Brian Appelbe, a research fellow from the Centre for Inertial Fusion Studies at Imperial College London, said the ability to replicate demonstrates the “robustness” of the process, showing it can be achieved even when conditions such as the laser or fuel pellet are varied.
As the climate crisis accelerates, and the urgency of ditching planet-heating fossil fuels increases, the prospect of an abundant source of safe, clean energy is tantalizing.
Nuclear fusion, the reaction that powers the sun and other stars, involves smashing two or more atoms together to form a denser one, in a process that releases huge amounts of energy.
In December, the US Department of Energy announced a $42 million investment in a program bringing together multiple institutions, including LLNL, to establish “hubs” focused on advancing fusion.
The original article contains 740 words, the summary contains 200 words. Saved 73%. I’m a bot and I’m open source!
This is the best summary I could come up with:
Scientists in California shooting nearly 200 lasers at a cylinder holding a fuel capsule the size of a peppercorn have taken another step in the quest for fusion energy, which, if mastered, could provide the world with a near-limitless source of clean power.
This marks another significant step in what could one day be an important solution to the global climate crisis, driven primarily by the burning of fossil fuels.
Brian Appelbe, a research fellow from the Centre for Inertial Fusion Studies at Imperial College London, said the ability to replicate demonstrates the “robustness” of the process, showing it can be achieved even when conditions such as the laser or fuel pellet are varied.
As the climate crisis accelerates, and the urgency of ditching planet-heating fossil fuels increases, the prospect of an abundant source of safe, clean energy is tantalizing.
Nuclear fusion, the reaction that powers the sun and other stars, involves smashing two or more atoms together to form a denser one, in a process that releases huge amounts of energy.
In December, the US Department of Energy announced a $42 million investment in a program bringing together multiple institutions, including LLNL, to establish “hubs” focused on advancing fusion.
The original article contains 740 words, the summary contains 200 words. Saved 73%. I’m a bot and I’m open source!
I thought the Z machine at Sandia produced more than it consumed? That was like 20 years ago
Nah, the Z machine never achieved ignition. That doesn’t mean it’s not a really cool facility though!
Hmm, I thought they were running fast ignition since like 2005?
They’ve been doing studies of what would be required for ignition for a while, but have never demonstrated ignition using the Z machine.
If they did have ignition, there’s no way they would’ve let LLNL claim to be first and enjoy all the media attention.